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The main catalytic function of 

 

β

 

-galactosidase (

 

β

 

-D

 

-D-
galactoside-galactohydrolase, lactase, EC 3.2.1.23) is
to hydrolyze 

 

β

 

-D

 

-galactosides, detaching the non-
reducing 

 

β

 

-D

 

-galactose residue. The enzyme cleaves
terminal 

 

β

 

-galactoside bonds, liberating galactoside
residues from the non-reducing side of galactosides,
including oligosaccharides, polysaccharides, glycolip-
ids, glycopeptides, glycoproteins, and mucopolysac-
charides [1]. The enzyme 

 

β

 

-galactosidase is present in
many bacteria, particularly in milk-utilizing microflora,
which consumes the natural 

 

β

 

-galactosidase substrate
(lactose and its metabolites). These bacteria include
various species of 

 

Propionibacterium

 

, 

 

Lactobacillus

 

,

 

and 

 

Streptococcus

 

 [2–4]. The 

 

β

 

-galactosidase of

 

Escherichia coli

 

 has been especially well-character-
ized; this enzyme is used in studies on the mechanism
of protein synthesis regulation in prokaryotes and in
research related to molecular biology and genetics [5

 

,

 

6]. However, researchers still devote much attention to
this enzyme. The transferase reaction catalyzed by

 

β

 

-galactosidases is known to result in the formation of

 

β

 

-galactooligosaccharides with various degrees of
polymerization and bond types [7]. These enzymes are
also involved in the metabolism of complex galacto-
sides (glycoprotreins and glycolipids). Endogalactosi-
dases can affect blood-group-specific substances; i. e.,

they are involved in immune reactions. Apart from this,

 

β

 

-galactosidase is of importance for metabolic pro-
cesses in nerve tissues [8].

The considerable attention given to the research on
the structural and catalytic properties of bacterial

 

β

 

-galactosidases used as a component of probiotic
preparations is due to their importance for the curative
properties of such preparations [9].

Further research is necessary for understanding the
physiological functions of these enzymes, as well as the
occurrence of multiple forms of 

 

β

 

-galactosidases in
various bacteria, their location, substrate specificity,
and genetic expression.

The goal of this work was to investigate the charac-
teristics of growth and 

 

β

 

-galactosidase formation by
various strains of bifidobacteria.

MATERIALS AND METHODS

 

Bacterial strains.

 

 Strains 

 

Bifidobacterium

 

 

 

adoles-
centis

 

 åë-42, 

 

B

 

. 

 

adolescentis

 

 GO-13, 

 

B. bifidum

 

No. 1, 

 

B. bifidum

 

 791, 

 

B. bifidum

 

 LVA-3, and 

 

B. longum

 

B379M, were kindly provided by the workers of the
All-Russian Research Control Institute of Microbiol-
ogy and Immunology and of the G.N. Gabrichevsky
Research Institute of Epidemiology and Microbiology.
Strains 

 

B. adolescentis

 

 91-BIM and 94-BIM, which
were obtained at the Laboratory for Biochemistry of
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Abstract

 

—We investigated the patterns of growth and 

 

β

 

-galactosidase production in the strains 

 

Bifidobacte-
rium

 

 

 

adolescentis

 

 GO-13, MS-42, 91-BIM, and 94-BIM and 

 

B

 

. 

 

bifidum

 

 No.1, LVA-3, 791 on media with var-
ious carbon sources. The synthesis of 

 

β

 

-galactosidase was shown to be associated with exponential growth of
the cultures involved. The maximum specific rate of 

 

β

 

-galactosidase synthesis of 0.20 U mg

 

–1

 

 h

 

–1

 

 was observed
in 

 

B

 

.

 

 bifidum

 

 LVA-3 after 3–6 h of cultivation. This value for 

 

B

 

. 

 

adolescentis

 

 91

 

-BIM and 94-BIM was lower
and amounted to 0.03–0.08 U mg

 

–1

 

h

 

–1

 

. On the medium with lactose, the highest specific growth rates for

 

B. bifidum

 

 LVA-3 and 

 

B. bifidum

 

 No.1 were 0.38 and 0.60 h

 

–1

 

, respectively, after 3–6 h of cultivation. For

 

B

 

. 

 

adolescentis

 

 91

 

-BIM and 94-BIM, this parameter peaked at 12–15 h of cultivation at 0.13 and 0.22 h

 

–1

 

,
respectively. The hydrolytic activity of 

 

β

 

-galactosidase in the growth medium decreased during the stationary
growth phase of the tested cultures.
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Microorganisms by autoselection; are presently stored
as 

 

B. adolescentis

 

 BIM B-91 and 

 

B. adolescentis

 

 BIM
B-87 at the Scientific Collection of Type Strains and
Industrial Nonpathogenic Microorganisms of the Insti-
tute of Microbiology of the National Academy of Sci-
ences of Belarus (Belorussian Collection of Non-patho-
genic Microorganisms).

 

Cultivation of the bacteria

 

 was carried out under
microaerophilic conditions at 

 

37°ë

 

 on a medium with
peptone and yeast extract [10]. Depending on the goal
of the experiments, the medium was supplemented with
different carbon sources. Physiologically active 18-h-
old cultures were used as inocula. 5% (v/v) of the inoc-
ulum was added to the medium and samples were taken
at intervals of 1.5, 3, 6, and 24 h for 2–4 days.

 

Activity of 

 

b

 

-galactosidase

 

 was determined colori-
metrically from the amount of 

 

o

 

-nitrophenol liberated
from 

 

o-nitrophenyl-

 

β

 

-D-galactopyranoside (

 

o

 

-NPG) at

 

37°ë

 

 after 15–60 min of incubation. The reaction mix-
ture contained 1.0 ml 0.14 M citrate–phosphate buffer
(pH 5.0), 0.5 ml of 0.1 % 

 

o

 

-NPG solution, and 0.5 ml
of the enzyme solution [11]. One activity unit (U) cor-
responded to the amount of the enzyme that catalyzed
the degradation of 1 

 

µ

 

mol of substrate per minute at

 

37°ë

 

.

 

Biomass of bacteria

 

 was determined as weight by
drying the washed cells at 

 

105°ë

 

 to constant weight,
and nephelometrically, from the optical density of a
bacterial cell suspension at 590 nm.

 

Number of viable bacterial cells

 

 per 1 ml of sus-
pension (the number of colony-forming units, CFU)
was estimated by inoculating diluted cell suspensions
on nutrient media with 0.2% of agar.

 

Active acidity

 

 was measured potentiometrically.

 

Specific growth rate

 

 (

 

µ

 

) was calculated using the
formula

 

µ

 

 = 

 

dxx

 

–1

 

dt

 

–1

 

,

where 

 

d

 

x

 

 is the change in the biomass (

 

x

 

) during the
time interval 

 

dt

 

.

 

Specific rates of enzyme synthesis

 

 (

 

ε

 

) were calcu-
lated using the formula

 

ε

 

 = 

 

dEdt

 

–1

 

x

 

–1

 

,

where 

 

x

 

 is the biomass (mg ml

 

–1

 

) and 

 

dE

 

 the activity
change during the time interval 

 

dt

 

 [12].
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Fig. 1. β-Galactosidase activity of collection cultures of
bifidobacteria. Cultivation on a lactose-containing medium.
Dark columns, β-galactosidase, U ml–1; light columns, bio-
mass, mg ml–1. 1, B. bifidum No. 1; 2, B. bifidum 791;
3, B. bifidum LVA-3; 4, B. adolescentis GO-13; 5, B. ado-
lescentis MC-42; 6, B. adolescentis 91-BIM; 7, B. adoles-
centis 94-BIM; 8, B. longum B379 M.
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Fig. 2. β-Galactosidase activity (dark columns, U ml–1) and
growth (light columns, mg ml–1) of bifidobacteria on media
with various carbon sources. 1, sucrose; 2, lactose; 3, galac-
tose; 4, glucose; 5, fructose; 6, maltose; 7, arabinose; 8, cel-
lobiose.
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RESULTS AND DISCUSSION

The data presented in the literature indicate that
β-galactosidase is an inducible enzyme in most of the
tested microbial strains [8]. Our analysis of β-galactosi-
dase activity in the culture fluid of various strains of
bifidobacteria maintained on a medium with glucose
revealed that all of the tested strains except B. longum
B379M displayed β-galactosidase activity after substi-
tuting lactose (as a carbon source) for glucose (Fig. 1).
The highest β-galactosidase activity level occurred in
B. bifidum No. 1 and B. adolescentis 91-BIM. We
selected the following cultures for subsequent study:

B. bifidum No. 1, LVA-3, and No. 1; and B. adolescen-
tis GO-13, 91-BIM, and 94-BIM.

It is well-known that microorganisms form numer-
ous polyfunctional metabolites while utilizing various
substrates. Importantly, the influence of medium com-
ponents on the cellular regulatory system is indirect. All
these substances undergo metabolic changes, and the
real regulatory metabolites, e.g., inducers, still remain
unidentified in most cases [8].

We investigated β-galactosidase production during
the cultivation of bifidobacteria on media with various
carbon sources. We found that the cultures grew well
with glucose, sucrose, and fructose, but no β-galactosi-
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Fig. 3. Kinetics of growth and β-galactosidase synthesis in B. bifidum LVA-3 (a), B. bifidum No. 1 (b), B. adolescentis 91-BIM (c),
and B. adolescentis 94-BIM (d). 1, µ, specific growth rate of bifidobacteria, h–1; 2, ε, specific β-galactosidase synthesis rate,
U/(mg−1 h−1).
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dase activity was detected in the medium. Galactose, a
product of lactose hydrolysis, caused an increase in
β-galactosidase yield in all tested B. adolescentis
strains (Fig. 2). This activity increased from 0.03 to
0.25 U ml–1 in B. adolescentis GO-13. As for arabinose,
a significant β-galactosidase yield was revealed in
B. adolescentis 91-BIM and 94-BIM and also in B. bifi-
dum LVA-3, which does not use arabinose as a carbon
source [13] (Fig. 2). The data on the increase in
β-galactosidase activity in various strains of bifidobac-
teria in response to the addition of lactose, galactose, or
arabinose suggest that the mechanisms of regulating
β-galactosidase synthesis or galactose transport into the
cell are different.

On the medium with lactose, the highest specific
growth rate (µ) occurred in B. bifidum LVA-3 and
B. bifidum No. 1 (Figs. 3a, 3b). The maximum µ values
were achieved after 3–6 h of cultivation; they were 0.38
and 0.60 h–1, respectively. B. adolescentis 91-BIM and
94-BIM had lower growth rates on this medium; the
maximum values (0.13 and 0.22 h–1, respectively)
occurred at 12–15 h of cultivation (Figs. 3c, 3d).

The specific β-galactosidase synthesis rate (ε) was
comparatively high during the first 3–6 h of cultivation.
The maximum ε value (0.20 U mg–1 h–1) was character-
istic of B. bifidum LVA-3 (Fig. 3a). The specific
β-galactosidase synthesis rates of B. adolescentis
91-BIM and 94-BIM were 0.08 and 0.029 U mg–1h–1,
respectively (Fig. 3c and 3d). The data on the relation-
ship between the growth rate and the β-galactosidase
synthesis rate significantly contribute to our knowledge
concerning bifidobacteria and are in agreement with the
information on the development of bacterial popula-
tions presented in the literature [13].

Our research on the growth dynamics of the tested
cultures on the medium with lactose revealed a relation-
ship between the growth of bifidobacteria and the level
of β-galactosidase activity in the medium (Fig. 4). The
biomass of bifidobacteria accumulates within 24 h of
cultivation. By the end of this period, the log [CFU/ml]
reaches maximum values (from 8.08 for B. adolescentis
94-BIM to 9.04 for B. bifidum No. 1). After 48 h of cul-
tivation, a decrease in viable cell numbers was detected;
after 96 h, they drop by 40–60%. In all the tested strains
of B. adolescentis and B. bifidum, active β-galactosi-
dase synthesis during the exponential growth phase was
followed (after 18–24 h of cultivation) by a decrease in
β-galactosidase yield and activity level in the medium
(Fig. 4). At the onset of the stationary phase, the decre-
ment in β-galactosidase activity was still insignificant,
but it progressively decreased at later cultivation stages.
In B. bifidum LVA-3, β-galactosidase activity was
0.12 U ml–1 (90% of the maximum value) after 9 h. It
dropped to 0.02 U ml–1 (15% of the maximum value)
after 21 h of growth (Fig. 4).

The decrease in the viable cell number and in the
β-galactosidase activity of bifidobacteria is likely to be
due to the decline in proliferation intensity, a change in

cell sensitivity to deleterious factors, and the effect of
extremely high concentrations of hydrogen ions that
are, in part, supplied by acidic metabolic products func-
tioning as autoinhibitors [15].

The data obtained agree with the conclusion drawn
in an earlier work that populations of bifidobacteria at
late developmental stages are characterized by
hypometabolism, i.e., a deceleration of metabolic pro-
cesses, a decrease in substrate utilization rate, and a
decline in the production of extracellular and cell-wall-
associated hydrolytic enzymes [13, 16].
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